top of page
Search
drumvilbopengangma

Emergency Standby Power Systems Pdf Editor



An uninterruptible power supply or uninterruptible power source (UPS) is an electrical apparatus that provides emergency power to a load when the input power source or mains power fails. A UPS differs from an auxiliary or emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions, by supplying energy stored in batteries, supercapacitors, or flywheels. The on-battery run-time of most uninterruptible power sources is relatively short (only a few minutes) but sufficient to start a standby power source or properly shut down the protected equipment. It is a type of continual power system.




Emergency Standby Power Systems Pdf Editor



The offline/standby UPS offers only the most basic features, providing surge protection and battery backup. The protected equipment is normally connected directly to incoming utility power. When the incoming voltage falls below or rises above a predetermined level the UPS turns on its internal DC-AC inverter circuitry, which is powered from an internal storage battery. The UPS then mechanically switches the connected equipment on to its DC-AC inverter output. The switch-over time can be as long as 25 milliseconds depending on the amount of time it takes the standby UPS to detect the lost utility voltage. The UPS will be designed to power certain equipment, such as a personal computer, without any objectionable dip or brownout to that device.


The basic technology of the online UPS is the same as in a standby or line-interactive UPS. However it typically costs much more, due to it having a much greater current AC-to-DC battery-charger/rectifier, and with the rectifier and inverter designed to run continuously with improved cooling systems. It is called a double-conversion UPS due to the rectifier directly driving the inverter, even when powered from normal AC current.


A hybrid (double conversion on demand) UPS operates as an off-line/standby UPS when power conditions are within a certain preset window. This allows the UPS to achieve very high efficiency ratings. When the power conditions fluctuate outside of the predefined windows, the UPS switches to online/double-conversion operation.[9] In double-conversion mode the UPS can adjust for voltage variations without having to use battery power, can filter out line noise and control frequency.


Many systems used in telecommunications use an extra-low voltage "common battery" 48 V DC power, because it has less restrictive safety regulations, such as being installed in conduit and junction boxes. DC has typically been the dominant power source for telecommunications, and AC has typically been the dominant source for computers and servers.


It can be considered to be on line since it spins continuously under normal conditions. However, unlike a battery-based UPS, flywheel-based UPS systems typically provide 10 to 20 seconds of protection before the flywheel has slowed and power output stops.[11] It is traditionally used in conjunction with standby generators, providing backup power only for the brief period of time the engine needs to start running and stabilize its output.


Because the flywheels are a mechanical power source, it is not necessary to use an electric motor or generator as an intermediary between it and a diesel engine designed to provide emergency power. By using a transmission gearbox, the rotational inertia of the flywheel can be used to directly start up a diesel engine, and once running, the diesel engine can be used to directly spin the flywheel. Multiple flywheels can likewise be connected in parallel through mechanical countershafts, without the need for separate motors and generators for each flywheel.


Its life cycle is usually far greater than a purely electronic UPS, up to 30 years or more. But they do require periodic downtime for mechanical maintenance, such as ball bearing replacement. In larger systems redundancy of the system ensures the availability of processes during this maintenance. Battery-based designs do not require downtime if the batteries can be hot-swapped, which is usually the case for larger units. Newer rotary units use technologies such as magnetic bearings and air-evacuated enclosures to increase standby efficiency and reduce maintenance to very low levels.


In large business environments where reliability is of great importance, a single huge UPS can also be a single point of failure that can disrupt many other systems. To provide greater reliability, multiple smaller UPS modules and batteries can be integrated together to provide redundant power protection equivalent to one very large UPS. "N + 1" means that if the load can be supplied by N modules, the installation will contain N + 1 modules. In this way, failure of one module will not impact system operation.[13]


Distribution of UPS status and control data requires that all intermediary devices such as Ethernet switches or serial multiplexers be powered by one or more UPS systems, in order for the UPS alerts to reach the target systems during a power outage. To avoid the dependency on Ethernet infrastructure, the UPSs can be connected directly to main control server by using GSM/GPRS channel also. The SMS or GPRS data packets sent from UPSs trigger software to shut down the PCs to reduce the load.


Expertise in generator power design for emergency, legally required standby, and business critical loads is an essential skill for an electrical engineer to master. When designing generator systems, electrical engineers must ensure that the generators and the building electrical systems can support the critical loads reliably and effectively. Building codes will dictate the prescriptive requirements for these systems (see Table). For business critical loads, the owner or client must be consulted to identify the nonemergency loads that require backup power. When the business needs outlined by the client require increased reliability, a paralleled diesel-generating system and electrical paralleling switchgear (PSG) typically are employed (see Figure 1).


This article examines standby systems in which generators serve as backup to the main utility source, such as those commonly installed in airports, data centers, hospitality complexes, water-treatment facilities, and in most life safety institutional applications.


NFPA 70: National Electrical Code (NEC), Article 517.30, as well as the California Electrical Code require hospitals and critical care facilities to have standby power systems that start automatically and run at full capacity within 10 seconds of power failure. Natural gas-powered generators generally are not acceptable as a source of power for generators due to fuel-source reliability. During disasters, such as an earthquake, gas lines are immediately turned off to avoid the risk of fire and explosion in case of a rupture. Lastly, diesel generators are available in a range of sizes to meet facility power needs.


For generators rated 2,000 kW or less, it is common to install 480 V 3-phase generators and step up voltage transformers. The cost of medium-voltage generators is significantly higher-in the order of an additional $80,000 to $150,000 per unit. Additionally, medium-voltage generators generally do not have the UL listing necessary to support emergency power loads.


Paralleling multiple sources provides increased reliability, flexibility in load management, and maintenance capabilities with little to no disruption. Multiple generators paralleled to a common bus can better serve emergency and business critical loads, particularly for system response time and dynamic load response once in operation. However, more complex, parallel generator standby systems have significant advantages with respect to reliability and redundancy. These advantages include redundancy, efficiency, expandability, and ease of maintenance and serviceability.


Redundancy: The redundancy inherent in the parallel operation of multiple generators provides greater reliability than a single generator unit for critical loads. If one unit fails, the backup loads are redistributed among other generators in the system on a priority basis. In many environments, the emergency loads that need the highest degree of reliable backup power usually account for only a fraction of the overall power generated by the system. In a parallel system, this means that most emergency elements will have the redundancy necessary to maintain power even if one of the units goes out. If an N+1 configuration is adopted, one generator can be offline for maintenance while serving the required loads. Furthermore, providing a running spare, an N+1 generator configuration will increase the reliability of the generator system from 98% to 99.96% reliability.


One of the primary purposes of redundancy is to eliminate single points of failure. The objective is to remove the single points of failure, and caution must be exercised to ensure they are not simply moved to another part of the system. The controls enabling redundancy must also be analyzed to avoid failure modes that compromise reliability. For example, paralleled generator sets that rely on a single master control for signals to start and close to a paralleled bus actually replace one failure point with two, as the master control and the communication link between the master and the generator sets each represent single points of failure. A well-engineered paralleling system will have dual hot-backup control systems, redundant communication pathways, redundant best battery select dc power supplies, multiple breakers, multiple power pathways, and a well-documented procedure for system recovery whenever a component fails (see Figure 4).


Expandability: When sizing generators to match system load requirements, it is often difficult to accurately project increases in load and adequately plan for unanticipated additional requirements. If load projections are aggressive, the initial investment in a generator may be higher than necessary. On the other hand, if load projections are inadequate, reliable standby power may be compromised or expensive post-installation system upgrades may be required. Parallel systems offer a level of scalability and modularity that allows for variations in load over time and optimum operation of the installed units. If physical space planning is executed appropriately, generators can be added for additional power supply when required (see Figure 5). 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page